新エネルギー(しんエネルギー)とは、公的には日本における新エネルギー利用等の促進に関する特別措置法(新エネルギー法)において「新エネルギー利用等」として定義され、同法に基づき政令で指定されるもののことを指す。現在、政令により指定されている新エネルギーは、バイオマス、太陽熱利用、雪氷熱利用、地熱発電、風力発電、太陽光発電などであり、すべて再生可能エネルギーである。ほぼ日本だけで用いられる用語(分類)である。海外では代替エネルギー(alternative energy)と呼ばれる分野と重なる。
法律上の定義では、再生可能エネルギーでない廃棄物発電や、一般的な「エネルギー」という言葉の用法には当てはまらない天然ガスコージェネレーション(→コジェネレーション)や燃料電池といったエネルギーの有効利用技術も当てはまるが、現在政令で指定されているものは、再生可能エネルギーに限られている。 しかしながら、法律上の位置づけはあくまで「石油代替」であり、地球温暖化の防止などの環境対策の観点は含まれていない。
現在、「新エネルギー利用等の促進に関する特別措置法施行令」(2008年4月1日改正施行)[7]で指定されているものは、以下の通りである。
我々の周りにはいくつかのエネルギー資源が存在するが、水力・風力・太陽熱など古来から使われていたものの改良や、生物(バイオマス)、地熱、波力、海洋温度差、太陽光発電といった近年の科学によって開発されたものが新エネルギーである。現在主力となっている化石燃料によるエネルギーはいずれは枯渇する有限の資源である。化石燃料や原子力エネルギーには環境への影響などに大きな問題があり、新エネルギーの開発は国際的にも重要な課題になっている。
1998年時点でのエネルギー資源の内訳は以下の通り[9]。
実に全体の3/4以上を枯渇性エネルギーに頼っており、特に運輸の分野ではそのほとんどを石油に頼っている。 新エネルギーはその定義上、いずれもまだ黎明期を脱していないが、潜在的な利用可能量は大きいと見込まれている。さまざまな新エネルギーについて、開発と利用が並行して進められている。
新エネルギーは地球温暖化への対策の一環として積極的な利用が進められ、将来は世界のエネルギーの数割が再生可能エネルギーで賄われるとも予測されている。再生可能エネルギー#利用状況と見通しを参照。
新エネルギーの特性を生かして、分散型電源として活用する試みも盛んである。分散型電源を参照。
太陽光発電(たいようこう はつでん、英: Photovoltaics[注 1]、Solar photovoltaics[1]、略してPVとも)は、太陽光を太陽電池を用いて直接的に電力に変換する発電方式である。ソーラー発電、大規模な太陽光発電所はメガソーラーとも呼ばれる。再生可能エネルギーである太陽エネルギーの利用方法の1つである。この項では発電方式としての太陽光発電について記載する。
技術的特徴として、発電量が日照(気候・天候や季節、地形による差が大きい)に依存し不随意に変化する一方、昼間の電力需要ピークを緩和できる。さらに火力発電では不可避の化石燃料消費量と温室効果ガス排出量をともに削減できる。放射性廃棄物の処理や事故が起きた場合の汚染被害といった課題を抱える原子力発電への依存度を下げる手段としても活用されつつある[2]。
設備は太陽電池、必要な電圧や周波数に変換するインバータ(パワーコンディショナー)で構成される。発電が行われる時間帯・地域と電力需要が異なる場合には、蓄電池も組み合わせて調整される。
開発当初は極めて高価で、宇宙開発等限られた用途に使われた[3]。近年は発電コストの低減が進み、多くの発電方法と比較して高コストながら、年間数十ギガワット単位で導入されるようになった(太陽光発電の市場動向を参照)。今後コスト低減や市場拡大が続くと見込まれ[4][5][6]、各国で普及政策が進められると同時に、貿易摩擦に発展する例[7]や、価格競争で倒産する企業が見られる[8]。
制約が少なく、腕時計から人工衛星にも用いられる。地上に直接設置でき、太陽光を十分に受けられパネル重量に耐えられる場所であれば、建物の屋根や壁など様々な場所に設置可能である[21][22]。軽量柔軟なフレキシブル太陽電池では、重量や接地面形状の制約も減少する[23]。剛性があるパネルであっても通常の半分程度まで軽量化し、耐荷重の制約を減らした製品も開発されている[24]。
上記のように、人家近くや緑地を除去しての建設には弊害が大きい。波が穏やかな内水面に設置したり[25]、海外では砂漠に建設したり[26]する例もある。
太陽電池からの電力は接続箱経由で取り出す。独立型での接続箱とインバータやパワーコンディショナとの間には直流側開閉器が備わる。系統連系型の接続箱とパワーコンディショナとの間にも直流側開閉器があるが、送電網につながる分電盤との間に交流側開閉器を備える。(余剰電力を)売電する系統連系型設備では売電用の電力メーターが買電力用のメーターと直列につなげる[27]。(全量を売電する系統連系設備では、太陽電池に繋がる配線と建物内配線を分離する。)
未電化地域や宇宙、遠洋・離島などの遠隔地や道路標識等の小電力用途では系統に繋がず、蓄電池や他の電源を組み合わせた独立型や独立蓄電型で構成される。
一般住宅用の系統連系型では高価な大型蓄電池の設置は稀であるが、災害等での停電時に電力供給が可能とする家庭用大型蓄電池製品も存在する[29][30]。独立蓄電型に商用電力を常時併用し災害停電発生時に必要な必要最小限の電力を連続供給する大型のUPSが発売された[31]。
太陽光発電のコストは、一般的に設備の価格でほぼ決まる。運転に燃料費は不要であり、保守管理費用も比較的小さい。エネルギーセキュリティ向上などの付加的なコスト上のメリットも有する。特に昼間の需要ピークカットのコスト的メリットが大きいとされる[33][34]P.131など)。途上国で送電網が未整備な場合、消費電力に比して燃料輸送費や保守費が高い場所など(山地、離島、砂漠、宇宙等)では、現段階でも他方式に比較して最も安価な電源として利用されている。
設備導入費用の内訳は太陽電池モジュール(パネル)以外の工事・流通・周辺機器の割合が大きく、2011年時点のパネル製造費割合が2割程度とされる[35]。
発電設備自体のコスト以外では火力発電や原子力発電の発電量の削減を進めるに伴い、需要と供給の各種変動ギャップを埋める費用発生も見込まれる。風力発電等の電源も関連する。スマートグリッド等の総合的な対策が各国で検討推進されている[36][37][38][39]。
開発当初は高価で用途も人工衛星等に限られたが[3]経験曲線効果に従い価格が低下した[40]。現時点でもコストが比較的高く普及促進に助成が必要であるが[41]、条件の良い地域では既にグリッドパリティが達成されたと報告されている[42]。中長期的にはコストが最も安い発電手段の一つになると予測されている[5]。
グリッドパリティ達成はモジュール価格で1ドル/Wp以下が目安とされた。2012年時点でパネルの種類によっては0.5 - 0.9ユーロ/Wp前後になっている[43]。更なるコスト低減を表明する企業もある[44]。
フランス・ドイツ・イギリス等で2020年までに順次既存の火力発電とコストで競い始めると予測されている[4]。また米国の好条件地域では、2012 - 2014年頃に天然ガス等の発電コストよりも安くなり始めると予測されている[45]。
日本では補助金が中断した2005年頃から一時的に価格が上昇したが[46]、2008 - 2009年にかけて普及促進政策が施行されてからは低減を再開した[47]。
蓄電池を用いる独立型システムについても、今後の価格低下と途上国での普及拡大が予測されている[48]。
発電した電力を二次電池に蓄電利用し外部送電網に接続しない形態。夜間や悪天候時の発電量低下時も太陽光発電のみの発電で電力供給する場合利用する。系統連系に比べ蓄電設備にかかる費用・エネルギー・CO2排出量が増加するが、外部からの送電費用が上回る場合のほか、移動式や非常用電源システムで用いる。消費電力が少なく送電網から遠い場合にメリットが大きいが、送電網に近くても送電電圧が高い場合には変電設備よりも独立電源設備が安いことがある。一般向けに、小型の最大電力点追従制御機能(MPPT)と自動車用バッテリーで構築する製品も市販されている[49]。
電力会社の送電網に同期接続する形態が系統連系である。送電網が近傍にある場合は、売電するために系統連系して利用する場合が多い。太陽電池モジュール→パワーコンディショナー→商用電線路という接続形態を取る。再生可能エネルギーの固定価格買取制度(FIT制度)[57]では発電量が設置場所での利用量を上回る分を電力会社に供給する(売電)。電力を送電網に送ることを逆潮流と呼ぶ。夜間や悪天候時に発電量を利用量が上回ると系統側から電力供給する。一般に独立型より発電規模が大きい。独立蓄電型のような大容量の蓄電設備が不要であり、その分、発電量あたりのコスト・温室効果ガス(Greenhouse Effect Gas:GEG)排出量・ライフサイクル中の投入エネルギーが独立型より小さい。
天候や気温で出力変動し曇天・雨天時は晴天時より大幅に発電量が低下し、夜間は発電できない。大規模な系統連系では変動が速すぎると他の電源による調整が追いつかない恐れがあるとされる[58]。
モジュールを複数の方向に向けて設置する場合個々の方向で最大出力になる時間帯がずれ、正午の瞬間最大出力が低くなる代わりに、他の時間帯に出力増加する。電力需要は時間帯で変動し一般に午後の方が多い[61]。固定式設備の場合、電力需要との整合性の観点では真南よりも多少西向きに設置するのが好ましい一方で角度により発電量が減る場合がある。米国サクラメント市における解析例では、20度の傾斜を持たせて設置する場合、真南から30度西にずらすと、総発電量は約1%減少するが、容量が系統に貢献する度合いは25%近く増加し全体で経済的価値が大きくなると報告された[62]。冷房需要の多い地域では日照と電力需要の相関関係が高い[63]。
最大電力点追従制御 (Maximum power point tracking、MPPT) は、インバーターが太陽電池からの電圧と電流の積である電力が最大になる出力電圧で電流を取り出すための制御機能である。使用することで日射量に応じて最適の条件で電力を供給できる。インバーターが直流/交流変換動作を行わない場合太陽電池の出力電流がゼロなら出力電圧は開放電圧 (Open circuit voltage;Voc) である。インバータの電流制御によって徐々に太陽電池の出力電流を増やした時にインバータを通過する電力が増えればさらに電流を増やし、逆に増やして電力が減れば電流を減らす方法によって最大電力点に到達する。この制御方法を山登り法と呼ぶ。住宅用太陽光発電用インバータでは太陽電池がアモルファス、結晶系など多様な電流・電圧特性を持つためいずれの特性の太陽電池に対しても安定に最大電力点に追従して運転することが求められることから最大電力追従のための一回の電流の変化幅と変化の速さ・頻度の選択が重要である。最大電力点追従制御は,インバーターでの直流運転電圧を太陽電池アレイと直流ケーブルを通した最大電力点の電圧に近付ける働きをする。最大電力点追従制御は太陽光発電システムの使用者による測定が困難でインバーターの直流/交流変換の効率と同じく製造者による性能表示が重要である。
太陽光発電設備の発電部は、多数の太陽電池素子で構成される。素子やその集合体には、規模や形態に応じて下記の様な呼称がある。
大部分の製品が稼働できると推測される「期待寿命」とメーカーが性能を保証する「保証期間」がある。メーカーの製造ミスで早期出力低下などトラブルが起こることもある。通常の経年劣化による出力低下は20年で1割未満とされる。
太陽光のエネルギーは膨大で、地上で実際に利用可能な量だけで世界のエネルギー消費量の約50倍と見積もられる[85]。地球に降り注ぐ太陽光の総エネルギー量173000 TWのうち僅か40 TWが光合成を経て有機物を生成する。人間活動で消費するエネルギー量はさらに少なく14 TWである。仮にゴビ砂漠に現在市販されている太陽電池を敷き詰めれば、全人類のエネルギー需要量に匹敵する発電量が得られるという[86]。
生産に必要な原料は豊富で少なくとも2050年頃までの予測需要は十分満たせるとされる[87]。シリコンを用いる太陽電池では資源量は事実上無限とされる。シリコンを用いない太陽電池はインジウムなどの資源が将来的に制約要因になる可能性があるが、技術的に使用量を減らせば2050年以降も利用可能とされる[87]。太陽電池用シリコン原料の供給は2008年まで逼迫し価格が高止まりしたが各社の増産が追いつき2009年から価格低下が予測された[88]。太陽電池専用シリコン原料生産技術は様々なものが実用化され、精製に必要なエネルギーやコストが大幅に削減されるとされる(ソーラーグレードシリコンを参照)。
潜在的には必要量よりも桁違いに多い設備量(7984GWp = 約8TWp分)が導入可能と見積もられるが、実際の導入量は安定電力供給の電源構成上の観点から決まると見られる[89]。導入可能な設備量は102GWp-202GWp程度とされる。建造物へのソーラーパネル設置により期待される導入量が多く、将来の導入可能量は戸建住宅53GWp(ギガワットピーク)、集合住宅22GWp、大型産業施設53GWp、公共施設14GWp、その他60GWpとされる[90]。
さて、将来的に太陽光発電の累計導入設備量が100GWp(=1億kWp)になれば日本の年間総発電量の約10%に相当する(200GWpで約20%、8TWpで8倍)[要出典]。
世界的に見て、日本の平均年間日照量は最も日照の多い海外地域の半分程度であるが、導入量世界一のドイツより多い(右上図参照)。国内では冬期に晴天が少なく積雪の多い日本海側で日照量(発電量)が少なく、太平洋側で多くなる[91]。
GHG排出量は化石燃料電源の排出量より格段に少なく、利用するとGHG排出量を削減できる[92]。エネルギーペイバックタイムやエネルギー収支比の点でも実用水準である[93][94]。
太陽光発電の発電電力当たりのGHG排出量や投入エネルギー量はシステム製造工程と設置環境での発電量でほぼ決まる。稼動時は燃料を必要とせずGHGを排出しない[92]。メンテナンスや廃棄時に排出するGHGや投入エネルギー量も比較的少ない[94]。
製造時等では温暖化ガスの排出を伴うが、発電中は全く排出しない。採鉱から廃棄までのライフサイクル中の全排出量をライフサイクル中の全発電量で割った値(排出原単位)は数十g-CO2/kWhであり、化石燃料による排出量(日本平均690g-CO2/kWh[96])より桁違いに少ない。
エネルギー源としての性能を比較する際に、エネルギーペイバックタイム (EPT) やエネルギー収支比(EPR)が指標として用いられることがある。製造や原料採鉱・精製、保守等に投入されるエネルギーに対して得られる電力の大きさを示す。ライフサイクルアセスメント(LCA)の一環である。エネルギー収支や環境性能の実用性を否定する意見は都市伝説として否定されている[98][99][100]。
現状でEPTが1-3年程度、EPRが10-30倍程度とされる[93][99]。
世界全体の太陽電池生産量は指数関数的に拡大し続ける。PV NEWSの集計は2010年の生産量が2009年に比べ111%増加し23.9GWp(ギガ・ワットピーク)となった[101](値は調査会社で異なりPhoton Internationalは27.2GWpとする[102])。地域シェアは中国台湾合計59%、欧州13%、日本9%、北米5%、他14%である[101]。 世界全体の2010年の太陽光発電導入量はEPIAの集計では16.6GWpである[103]。solarbuzz社の集計で18.2GW、額が820億米ドル(約6.5兆円)である[104]。地域別年間導入量は欧州(13.2GWp)、日本(0.99GWp)、北米(0.98GWp)、中国(0.52GWp)、APEC(0.47GWp)、他(0.42GWp)である[103]。 市場規模は2025年に太陽電池約9兆円、構成機器全体で約13兆円、システム構築市場が約18兆円となり、それぞれ2009年の5倍以上に達するとも予測されている[6]。
2015年の世界市場の太陽電池セル製造メーカー上位3社のシェアは次の通りである[105][106]。上位10企業のシェアの合計は53%で、2008年の54%[107]から低下した。[106]。供給過剰と価格競争が続き旧来の大手企業が倒産する例がある[8]。
中国 | トリナ・ソーラー | 7% |
中国 | Ja Solar | 7% |
韓国 | ハンファQセルズ | 7% |
2008年の世界市場の太陽電池セル製造装置売上高トップはアプライド・マテリアルズであった[108]。以下Roth & Rau、Centrotherm、OC Oerlikon Balzers、アルバックと続く。
日本は1970年代のオイルショックから開発と普及に力を入れ[123]、生産量や導入量で長く世界一であり[124]。2000年ごろまで太陽光発電量は欧州全体より日本1国が多かった[要出典]。
2004年頃には世界の約半分の太陽電池を生産していたが2010年の生産世界シェアは9%である[101]。生産自体は2GWpを超えて増加しており(右図)[125]半分以上を輸出する。輸入量は国内販売量の約16%である[126]。国内出荷量の約8割は住宅向けで[126]一戸建て向けが中心であるが近年は集合住宅での導入例も見られる[127][128]。
2005年に新エネルギー財団 (NEF) の助成が終了すると国内市場は縮小し、価格が下がらなくなった。
2008年以降助成策強化で国内市場は拡大し価格が下がり始めた。(右図)
関連産業の規模は2010年度見込みが約1.3兆円とされた[129]。2011年度に約1.5兆円に拡大するとする[129]。約半分がセル・モジュールで半分が他産業の分である[129]。関連雇用は4万人を超えたとする[122]。
2011年3月の東日本大震災後、日本政府による自給エネルギーの確保と低炭素社会の実現という政策で、化石燃料や原子力に依存し過ぎないエネルギーミックスを推進。2012年7月には再生可能エネルギーの固定買い取り制度が導入され、新規事業者の参入が相次いだが、その後の買い取り価格の段階的な引き下げで市場拡大のペースが鈍化、事業者の乱立の影響もあり競争は激化し、早くも淘汰の時代に入り、倒産業者数も2015年度には54件と前年度比較で倍増、2016年には1月ー9月だけで42件(負債総額185億200万円)に上った。2016年には日本ロジテック(東京都)、太陽エナジー販売(神奈川県)、サン・エコイング(兵庫県)などが倒産した[130]。
日本では2011年現在余剰電力買取制度(固定価格買取制度)と国・自治体の各種助成策が実施された。2012年から公共産業向け設備への全量買取制度が導入されると共に、他の再生可能エネルギーも全量買取対象に加わる[131]。 共同で太陽光発電所を設置・運営し売電収入を分配する市民共同発電所の設置例・検討例がある[132][133][134]。
これらの政策により太陽光発電導入は2013年から急激に進み[135]、太陽光発電設備の発電能力容量は、2015年の末までには3000万kW(30GW(ギガワット))に達するとみられている[136][注 2]。太陽光発電設備の利用率は、年間を通すと全体の13%の時間だと計算されている[135]。しかし、晴れた日の日中は、冷房のため電力需要が増加すると同時に太陽光発電の発電量も最大となる[137][138]。実際は発電能力の半分程度の出力となってもピーク時の需要の増加に応じて電力供給量を補うことができる[138]。2015年の夏の場合、沖縄電力を除く他の9電力会社の管内では、電力需要が最大となった時間帯に太陽光発電によって1千kW以上、すなわち原子力発電所十数基分の発電量にあたる量の電気を供給して、需要に対応した[139][140][141]。
2010年の日本の太陽電池生産企業はシャープ、京セラ、三洋電機、三菱電機である[106]。
他にセル生産や部材供給に関わる企業が多数存在する(例:[142])。
中国やカナダ等海外からの日本市場参入が見られる[143]。
2017年5月16日、兵庫県内の複数の太陽光発電所から送電ケーブルを盗んだ電気工事業者が逮捕された。被害は50件、約9,100万円。山間部など人目のつかない、警備の手薄な発電所が狙われており、状況によっては防犯体制などのリスクや対策費用が必要となること判明している[144]。
宇宙で太陽光発電を行う宇宙太陽光発電構想があり、日本、アメリカ、欧州等で研究が進められている。
太陽光発電用の人工衛星を打ち上げ、発電した電力をマイクロ波またはレーザー光に変換して地上の受信局に送信し、地上で再び電力に変換する構想である。宇宙空間の太陽光は、大気で減衰される地上より強力であり、大気圏外では地球上の天候(雲)や季節に左右されない。
再生可能エネルギー |
---|
風力発電(ふうりょくはつでん)とは風の力(風力)を利用した発電方式である。 風力エネルギーは再生可能エネルギーのひとつとして、自然環境の保全、エネルギーセキュリティの確保可能なエネルギー源として認められ、多くの地に風力発電所や風力発電装置が建設されている[1]。 風力エネルギーの利用として、発電には発電風車(風力タービン)が、機械的動力を得るには粉挽き風車のような風車(ウインドミル)が、揚水や灌漑には揚水風車(風力ポンプ)が、さらに船の推進には帆が用いられている。巨大な風力発電所(ウインドファーム)は、送電線に接続されている何百機もの風車で構成されている。最近のEUの調査では、新規に建設された陸上風車は安価な発電源であり、石炭・ガスなどの化石燃料による発電所より安価で、競争力を持っているという。洋上風力は陸上より安定で強力であり視覚障害はないが、建設維持コストは陸上風力より高くなる。小型陸上風力発電所は送電網に連系して送電したり、あるいは連系しないで電気を自己消費される。 化石燃料の代替としての風力は、大量で、再生可能で、広域に分布し、クリーンで、稼働時に温暖化ガスを排出せず、少しの土地を使うだけである。2013年において、デンマークでは風力で3分の1以上の電気を賄い、世界では83か国が風力発電で電気が系統に連系されている。風力発電の設備容量は2014年6月に336GWまで急速に拡大し、世界の電気需要の4%が風力発電であり、なお急激に増加している[2]。
風力発電は世界各国で活用されており、2010年では世界の電力需要量の2.3%であるが、2020年には4.5~11.5%に達するという調査もある[5]。
2013年末の風力発電の累計導入量は318.1 GWに達しており、増加率は鈍化しているが、前年に比べて12%増加した。[6]。2013年から2018年までの、風力発電の増加は、12%から15%の伸びが予想されている。[6]。中国の伸びは顕著で、新規導入量は16.1GWである。また洋上風力の導入で英国の増加が特徴的である。[6]。
風力発電機メーカー市場のシェアは2009年時点でデンマークのヴェスタス社が12.5%で1位、米国のGEエナジー社が12.4%で2位、以下中国の華鋭風電が9.2%、ドイツのエネルコンが8.5%、中国のGoldwindが7.2%、スペインのGamesaが6.7%と続いている[7]。
|
|
イギリスでは1887年にグラスゴーのJ.ブライスが垂直風車により出力3kWの発電を開始したとされ、アメリカでは1888年にクリーブランドのC.F.ブラッシュが直径17m144枚のブレードからなる巨大な多翼風車で12kWの風力発電を1908年まで20年間使用されたとされ、1891年にデンマークのアスコウ(Askov)でポール・ラ・クールによって風力発電研究所が設立され、風力発電で電気分解した水素と酸素で発電の実験が実施された[9]。日本では1949年に山田基博が札幌に(株)山田風力電設工業所を設立し風車の本格的製造を開始した。オイルショックを機に風力発電等の代替エネルギーへの関心が高まり、1973年に足利工業大学、三重大学で風力発電の研究開始、1975年に鶴岡高専、山形大学で風車の研究が開始され、その後、複数の教育機関や企業が参入したものの、1980年代には石油の安定供給、価格下落により研究開発は下火になり、1990年代に入ると地球温暖化への対策の一環として再び、風力発電への関心が高まった。1970年代とは異なり、複合材料やパワーエレクトロニクス、数値流体力学によるシミュレーション技術の発展が追い風になり世界各地で普及が進む[10][11]。
風力発電は従来の集中型電源と様々な点で異なる特性を持つ。
主に環境負荷の小ささ、化石燃料の使用量削減、エネルギー安全保障、産業振興・雇用創出などが挙げられる[1][12]
主に出力電力の不安定・不確実性と、周辺の環境への悪影響の問題があり、特に設置場所の選定が重要となっている。
発電に使用される風車は風力タービン、風力発電機、風力発電装置などと呼ばれる。 形式としては水平軸のプロペラ型が最も多く用いられている。(風車参照)その他、用途に応じて垂直軸のダリウス型、ジャイロミル型、サボニウス型またはその併用型を用いる場合もある。また直線翼垂直軸型[14]、スクリューマグナス風車(マグヌス効果参照)もある。風車以外では、振動板に風を受け、圧電素子で電力を得る方法が研究されている。[15])
一般的な水平軸プロペラ式では大きく3つの構成要素からなる。
ブレード(翼)、ローター軸、ハブなどで構成。風力タービンコストの約20%を占める。風の運動エネルギーを低速の回転エネルギーに変換する。
風力タービンコストの約34%を占める。発電機軸、発電機[16][17]、制御機器、増速機(遊星歯車など)、[18] などで構成され、ナセルと呼ばれる筐体に収納される。増速機は発電に適した回転速度に調節する役割がある。
風力タービンコストの約15%を占める。基礎、タワー、ヨー制御システムなど[19] で構成される。
風力原動機はローターの直径が大型化するに伴い効率が向上し、採算性も向上する。地上付近では地面や障害物等による摩擦があり、高所の方がより効率よく風を捉えられるのが大きな理由である。このため発電事業用の風力原動機は大型化する傾向にある。2005年は、世界的に2.5MWクラスが中心であった。2008年には5MWの機種も登場している[20]。 しかしながら、保守の観点から考えるならば、ロータ径が大型化するにつれて、タワーは高くなり、ブレードは長くなることから、点検や補修に困難が生じやすくなる。
発電量はローターの半径の2乗、風速の3乗に比例する。効率は最高59%である(ベッツの法則)[21]。1919年、ドイツのアルバート・ベッツにより導き出された。
日本メーカーでは1MWクラスが主流であったが、近年、2〜2.4MWクラスのものが商品化された[22]。また、家庭への普及を狙って小規模の風力原動機を商品開拓する動きもある[23]。
風力発電機の設置工事に必要な期間(工期)は、規模や環境にもよるが、概して他の発電方式よりも短い。1基では通常3〜4ヶ月とされる[24]。20基程度では10〜11ヶ月、50〜100基程度の大規模な集合型風力発電所でも1〜2年ほどの例がある。 デンマークの沖合6-15kmに2MW基を80基、合計160MWを建設した実例では、現場での建設作業は約半年、製造から含めても約1年半で済んでいる[25]。これは他の大規模集中型発電所(原発や地熱発電所など)に比べると格段に短い。これは需要構造の変化への対応や機器の更新を容易にする他、工事期間中の利子も低く抑える効果がある。例えば、下記のような利益が得られる。
ただし、工事に先立って風況調査などにある程度の準備期間が必要になる。また近年の需要急増により、納期が1年を超える例も見られる[27]。
保守については、一般に風力発電機は大規模集中型発電所(原発・大型火力など)に比して修理や点検が比較的容易であり、必要な時間も短くできるとされる[12]。 ただし日本の場合は2008年時点で風力発電機の8割程度が輸入品であるため、修理部品などは海外から取り寄せる場合が多くなる。そのため部品が届くまで数ヶ月かかることがある[28]。
集合型風力発電所は、多数の風力タービンを1カ所に設置し発電する施設。ウィンドファーム(wind farm)とも呼ばれる。大規模なものでは数百平方マイルの広大な敷地に数百の風力タービンが並ぶが、タービンとタービンの間の土地は農耕など他の用途に利用できる。洋上に設置される場合もある。
可倒式風力発電設備は、可倒式の風車を利用した発電施設。倒すことで台風の被害を防ぐ事が出来る、メンテナンスを地上で行える、設置に大型の重機を必要としないと言った利点がある[29][30]。
海上に風力発電機を設置することを洋上風力発電(オフショア風力発電、海上風力発電、海洋風力発電)と呼ぶ。地形や建物による影響が少なく、より安定した風力発電が可能となる。また立地確保、景観、騒音の問題も緩和できる。2010年末時点で、欧州を中心に3GW以上が導入されている[31]。
水深が浅い海域において海底に基礎を建て、大規模なウインドファームを建設する例が各国で見られる[32][33]。元々はデンマークを中心に建設が進められてきたが、近年になって欧州全域に広がる勢いをみせており、特に英国における伸びが著しい。英国政府が掲げるその目標は、2020年までに洋上風力発電設置容量33GW(Round 1,2,3合計)導入目標という壮大なものである。ドイツにおいても、北海における国家プロジェクトAlpha Ventus 60MWを皮切りに、2009年以降の導入加速が見込まれる。日本においても港湾内などにおける建設例が見られ[34]、2010年3月には茨城県にて初の港湾外への設置事例が稼働を開始している[35]。また水深が深い場所のために、浮体式の基礎を用いる方式も研究されている。2009年にノルウェーにおいて、フルスケールとしては世界初の浮体式洋上風力発電施設Hywindが建設さた[36]。沖合いでの洋上風力発電(沖合風力発電)については、電力の陸上への送電が困難であるため、発電した電気で水素を製造し、これを圧縮したり、有機ハイドライドに吸着させる等により輸送することが研究されており、これにより電力変動の問題も解決されることが期待されている[要出典]。
九州大学の研究者を中心に、海上に巨大な風力発電所を造り、新しいエネルギーとして活用しようという構想の研究会が発足している[37]。 構想によると、海上にはちのす状に浮かべた六角形のコンクリート構造物(一辺300メートル)の上に、従来の2倍以上の風力を得る直径100メートルの風力原動機を設置。送電線は使わず、得られた電力で海水を電気分解して水素を作り、その水素を船で陸に輸送して水素発電や燃料電池に使うというもの。高強度の新素材や効率的な風車、水素貯蔵などの最新技術を組み合わせ、原発1基分に相当する100万キロワット級の発電を低コストで目指している。新素材の耐用年数は100年以上とされ、発電コストは原発の半分以下に抑えられる。六角形の浮体の内部を養殖場にすることで、漁業補償の問題も解決できるとしている。資金の目途が付けば6〜7年で技術確立が可能としている。
米国、ヨーロッパでは次世代の風力発電として、強くて安定した風が得られる上空に風船などで風力原動機を持ち上げて設置する空中風力発電機(AWT,英語: Airborne wind turbine)などのアイデアが検討されている[38] [39][40][41][42][43]。
2006年の欧州での導入量は2005年に比べ約19%増加し、48027MWに達した。設備全体による年間発電量は約100TWhに達する見込みである。これは2005年のEU全体の電力消費量の3%に相当する。2020年にはEUの全電力需要の13%を風力だけで賄える見込みである[44]。 政策的には、殆どの国が固定価格買い取り制度(FIT)制と呼ばれる制度を軸として普及を進めている(再生可能エネルギー#普及政策参照)。 普及の最も進んでいるデンマークでは既に国全体の電力の2割が風力発電によって賄われ、なおも普及を進めており、2025年には5割以上に増やせるとしている[45]。スペインでは2010年に風力発電で電力需要の16.6%を供給し、また電力由来の二酸化炭素排出量の26%を削減した[46]。非化石エネルギーのシェア増加により電力コストが抑えられて隣国フランスよりも安価となり、2010年には8.3TWhを輸出した[47]。また2011年3月には風力発電による月間の発電量が21%を占め、原子力やガス複合火力を抜いて最大の電力供給源となった[47]。
米国は、以前からカリフォルニア州やテキサス州で大規模な風力発電ファームを建設していたが、2008年5月にエネルギー省(DOE)が2030年までに電力需要の20%に相当する約290GWを風力発電で賄うという目標を立ててからさらに設備量が増えた。しかし2010年には金融危機等の影響で市場が前年より縮小し、中国に累計導入量で抜かれた[5]。
カリフォルニア州には2014年1月現在で世界で最大の風力発電所であるアルタウインドエナジーセンターが存在する。大手の風力発電機製造企業としてGEエナジーが存在する。
日本では欧米諸国に比して普及が進んでいない。理由として、台風に耐えうる風車を施設すると欧米と比較してコストが上がることや、大量の風車を設置できるだけの平地の確保が困難なこと、元々日本ではクリーンエネルギーとして太陽光発電を重視してきた歴史があることなどが挙げられる。また、アメリカやドイツは原子力発電所の新設を政策的に停止しているため風力発電への依存度を増している。
日本の電力会社は風力発電事業に消極的であるが、自治体による「自治体風車」や市民グループによる「市民風車」等のプロジェクトの取り組みが進んでいる。[48]
日本では、2004年ごろから風力発電が本格的に導入が開始され、以後、徐々に普及してきており、2014年時点で全国に約2000基、発電能力の合計は約250万キロワットとなっている。ただ、普及に伴い、風車部分が丸ごと落ちるなど、惨事に繋がりかねない事故も起こるようになっており、対策が検討されている[49]。日本の風力発電所で有名なのは苫前町と稚内市等が挙げられる。
風力発電は、水力発電に次いで再生可能エネルギーの中では採算性が高く、「2500-5000kw級の大口径風車・電池コストを考えないならば」天然ガス価格百万Btuあたり10-20ドルでは、天然ガス火力や原子力と競争可能なコストまで下がっている。(但し、米国ではシェールガス乱掘でガス価格が5ドルに下がったために、2013年現在では 再びガス火力が有利になっている)。 但し、導入に際しての「幹線送電線までのアクセス送電線建設コスト」「電池コスト」を補うために、直接・間接的な支援を行う国が多い。
ドイツは開発適地の枯渇とともに頭打ちになったが、中国と米国が急速に設備容量を増やして、両国とも風力発電量は日本における水力発電の設備容量1000億kwhを追い抜いており、米国のグリーンニューデイールを支えている
また、ドイツで始まった「固定価格買取制度」は風力発電会社の収入を安定化させて、風力発電会社の社債を、投資可能な格付けの金融商品に育て上げるのに成功した。老人が 預金から、より利率の良い風力発電投資信託にシフトすることで、風力発電建設が急速に進み、経済成長に寄与した。 (但し、風力資源未開発地が枯渇するにつれ、ドイツ政府は、2013年時点で、風力より2-3倍コストが掛かる太陽電池を、時期尚早に「固定価格買取制度」の対象としたことや、その負担を事業者から消費者に転嫁したことから、天然ガス価格上昇とともに、ドイツの家庭電気料金が3倍に跳ね上がる原因となってしまった)
大規模に導入しているデンマークにおいては、風力発電の経費は過去20年間で80%以上削減され、通常電力と競争可能な水準まで低下した[50]。温暖化対策費まで考慮すると、欧州における風力は石炭火力より発電経費が一桁少ないとする試算もある[51]。なお、近年の資材の高騰により、装置価格の増加も報告されている[52]。
風力発電は一度設置してしまえば、その後は、化石燃料の価格変動による影響がほぼ保守費用などに限られるため、その分事業が安定化する利点がある[12]。
火力発電を減らして風力発電で代替するにあたっては、出力変動などの対策、および、送電網の拡張や予備発電設備容量の確保等が必要となる[52][53]。一般的には、程度の導入割合までは、その追加費用が実用的な範囲で済むとされる(例:[52][54][55])。欧州では域内での風力発電などの増加に対応した系統の拡張が検討されている[56]。
風力発電は小規模分散電源であり、導入規模や範囲が増すほど全体的な信頼性と安定性が高まり、発電コストも低減する。
「生産から設置・運用〜廃棄に至るまでのライフサイクル中に投入するエネルギー」を「風力により生み出すエネルギーによって節約できる」までの時間をエネルギーペイバックタイム(EPT)、また寿命との比をエネルギー収支比(EPR)という。原動機の性能および設置場所の風況に大きく左右されるが、通常EPTは数ヶ月程度[61][62][63] とされる。またエネルギー収支比は38〜54とも見積もられている[63]。大型化などの技術改良のほか、リサイクルや基礎部の再利用等によって今後も改善が見込まれている。
|
エネルギー(独: Energie、英: energy)とは、
現在用いられているようなエネルギーという概念が確立したのは19世紀後半のことであるが[5]、概念の確固たる成立はともかくとして、「エネルギー」という用語は、19世紀のはじめ、トマス・ヤングが1807年に著書『自然哲学講義』(英: A Course of Lectures on Natural Philosophy) の中で、従来使われていた「力」を意味するラテン語 vis の代わりとして提案された[4]。
「エネルギー」の語源となったギリシア語の ἐνέργεια (ギリシア語ラテン翻字: energeia) は、ἐνεργός(ギリシア語ラテン翻字: energos) に由来する。これは、ἐν(エン)と ἔργον(エルゴン)を組み合わせた語で、ἐν は前置詞、ἔργον (ギリシア語ラテン翻字: ergon) は「仕事」を意味する語である。つまり、「物体内部に蓄えられた、仕事をする能力」という意味の語である。エネルギーという概念は「仕事」という概念と深い関わりがあるのである。
このようにエネルギーという語・概念は「物体が仕事をなし得る能力」を意味したが、その後、自然科学の説明体系が変化し、熱・光・電磁気もエネルギーを持つことが知られるようになり、さらに、質量までがエネルギーの一形態である、と理解されるようになった[2]。
英語読みでは「エナジー」であるが、同じ意味である。
現代において「エネルギー」という語で呼ばれている概念には、ひな形(あるいは萌芽と呼んでもよいもの)があり、その概念は、ヨーロッパ近世においては「エネルギー」とは呼ばれておらず、ラテン語 で vis(ウィス、力の意)と呼ばれていた。この概念が様々な経緯を経て、現在の「エネルギー」という概念に似たものに変化してゆくことになった。
1600年頃のこと、ガリレオ・ガリレイは、釘の頭に(金づちよりもはるかに)重い物(石など)をのせても、釘は木の中にめりこんでゆかないのに、それよりも軽い金づちでも振って打つだけで、釘が木材に入ってゆく、ということを、ひとつの問題として取り上げ、運動する物体には何らかの固有の「ちから」がある、との考え方を示した。
デカルトは、1644年に出版された著書において、衝突という現象においては、物体の重さと速さの積(現在の式で言えば、おおよそ mv に相当するような量)が保存されるとし、この量こそが物体の持つ「ちから」である、と述べ、この量は保存されている、と主張した。
ライプニッツは、重さと速さの二乗の積(現在の式で言えば、おおよそ mv2 に相当する量)こそが「ちから」である、とし、この量が保存されている、と主張した。なお当時、静力学の分野では、vis mortua(死んだ力)という概念があったが、その概念と対比ししつつ、ライプニッツはその力 mv2 を vis viva(生きている力、活力)と呼んだ。
デカルトの考え方とライプニッツの考え方では、数式上異なった結論が導き出される。デカルト派の人々とライプニッツ派の人々の間で「ちから」の解釈に関する論争が起き、この論争は実に50年ほども続いた。この論争を活力論争[6]と言う。
この問題についてレオンハルト・オイラーは、1745-50年頃執筆された手稿「自然哲学序説」の中で (1) 両主張の差異は運動と力の関係を同一時間で比較するのか()または同一距離で比較するのか()の違いであること、(2) 慣性を物体に内在する「力」に置き換えることが誤りであること、を示している[7]。
その後、ガスパール=ギュスターヴ・コリオリが、活力が であることを示した[4]。これは、今日で言うところの「運動エネルギー」に相当することになる[4]。
熱力学において、ある条件の元で仕事として取り出すことのできるエネルギーとして自由エネルギーが定義される。自由エネルギーには、ヘルムホルツの自由エネルギーとギブズの自由エネルギーの 2 つがある。ヘルムホルツの自由エネルギー[8]は等温操作によって熱力学系から得られる仕事の最大値として定義される。ギブズの自由エネルギー[9]は等温等圧操作によって得られる仕事の最大値を与える。
自由エネルギーは、適切な変数の下では平衡状態の熱力学系のすべての情報を持った関数、すなわち熱力学ポテンシャルとなる。また、平衡状態は自由エネルギーが極小である状態として実現する。このように、自由エネルギーは理論的な道具として良い性質を持った量である。
一方、工学などの応用領域においては、熱力学系から実際に利用できるエネルギーに意味があり、それを評価する量としてエクセルギー[10]が考案されている。
力学においては、粒子の持つエネルギーは運動エネルギーと位置エネルギーに分類される。運動エネルギーは粒子の運動量に依存するエネルギーで、ニュートン力学では
と定義される。ここで K は運動エネルギー、p は運動量、m は質量、v は速度である。また、|·| は絶対値を表し、太字の量はベクトル量を表す。 位置エネルギーは質点の位置に依存するエネルギーで、特に質点が持つ位置エネルギーは、その質点の位置を変数とする関数として定義される。 位置エネルギーを表す文字としては、しばしば V や U、Φ や φ が用いられる。
粒子の持つエネルギーを一般化して、1 つの力学系に対してエネルギーを定義できる。 運動エネルギーに関しては、各粒子が持つ運動エネルギーの和が系の運動エネルギーに対応する。
ここで N は系の粒子数であり、pi は i 番目の粒子の運動量、mi は i 番目の粒子の質量である。 位置エネルギーは、各粒子の位置を変数とする関数として定義される。多くの場合、位置エネルギーは 1 体のポテンシャルと 2 体のポテンシャルを用いて、
と書き表すことができる。ここで Φ は系の位置エネルギー、φ1 は 1 体のポテンシャル、φ2 は 2 体のポテンシャルであり、ri は i 番目の粒子の位置を表す。
力学において定義されるこれらのエネルギーの総和は、熱力学における定義と対比して、しばしば力学的エネルギーと呼ばれる。 力学的エネルギーの変化量が、系が外界に対してなした仕事に等しい場合、「力学的エネルギーは保存している」と言い、これを力学的エネルギー保存則と呼ぶ。力学的エネルギーが保存しない系は、たとえば粒子に対して摩擦力が働く系や粒子が非弾性衝突をする系である。還元主義の立場では、このエネルギーの損失は、粒子やそれが運動する媒質などの内部自由度を記述し切れていないことに起因すると考えられている。
量子力学において、物理量や可観測量は通常の実数を用いては必ずしも表現できず、演算子を用いて表現される[11][12]。系の力学的なエネルギーは、古典論における解析力学と同様に系全体のハミルトニアンによって表されるが、量子力学ではハミルトニアンは状態ベクトルに作用する演算子となる[13]。測定によって得られる値は、そのハミルトニアンの固有状態に対応した固有値として与えられる[14][注 1]。ある系について、エネルギーを測定できる限りにおいて、エネルギー固有値は実数に限られるため、系全体のハミルトニアンはエルミート演算子でなければならない。
非相対論的な量子力学では、正準交換関係を通じて運動量を演算子に置き換えることで、運動エネルギーは、
と定義される[15]。ここで ^K は運動エネルギー演算子、^p は運動量演算子である。運動エネルギーを表す文字としてはしばしば K や T が用いられる。
位置エネルギーも同様に位置演算子の関数に置き換えられる[15]。
ここで V, ^V は位置エネルギーおよび位置エネルギー演算子、r, ^r は粒子の位置および位置演算子である。
1 粒子系のハミルトニアン ^H は運動エネルギーと位置エネルギーの和として与えられる。
量子力学においては、古典力学とは異なり、定常状態でとり得るエネルギー固有値 E は非負でなければならず、固有値は必ずしも連続的ではなくなる[5]。エネルギーの値がこのように離散的になることの効果が、特に低温での熱的な性質に顕著に現れる[5]。
電磁気学において、電磁場のエネルギーは、現象論的なマクスウェルの方程式から
と与えられる[16]。ここで E は電場、D は電束密度、H は磁場、B は磁束密度である。また、· はベクトルの内積、V は空間全体およびその体積を表す。特に、真空中では電束密度 D および磁場 H はそれぞれ電場 E と磁束密度 B で置き換えられ、国際単位系を用いれば、真空中の誘電率 ε0 および真空中の透磁率 μ0 を用いて、
と表すことができる。また、被積分関数である、電場と電束密度の内積 E · D、および磁場と磁束密度の内積 H · B の和は[注 2]、電磁場のエネルギー密度を与える[17]。
真空中のエネルギー密度は、
である。すなわち、電磁場のエネルギー密度は電磁場の大きさの 2 乗に比例する。
ある空間における電磁場のエネルギーについて、その時間的変化は電場が電荷に対してなす力学的な仕事と、電磁波として運ばれるものに分けられる[18]。前者の電荷に対する電磁場がなす仕事やそれによって生じる熱はジュール熱と呼ばれる[19]。
ここで j は電流密度、A は領域 V の表面およびその面積を表す。また、rA は表面 A 上の点を、n は表面に垂直で領域の外を向いた単位ベクトルを表している。右辺の第 1 項がジュール熱、つまり電磁場と電荷の相互作用によるエネルギーの移動を表し、第 2 項が電磁場の変形によって外部へ流出するエネルギーの流量を表している。第 2 項の被積分関数はポインティング・ベクトルとして次のように定義される[20]。
エネルギーはその移動形態や保存形態によって様々に分類される。熱機関と熱浴との温度の差を利用して取り出されるエネルギーは、ときに熱エネルギーと呼ばれる。また化学ポテンシャルの差を利用して取り出されるエネルギーは化学エネルギーと呼ばれる。他にも、電流によって運ばれるエネルギーは電気エネルギー、電磁波の持つエネルギーや電磁波によって得られるエネルギーは光エネルギー、原子核分裂や原子核融合などの原子核反応によって生じるエネルギーは原子エネルギーなどと呼ばれることがある。これらの呼称は慣習的なもので、必ずしも厳格に用いられているわけではなく、また一般に通用する厳密な定義も存在しない。
エネルギー energy |
|
---|---|
量記号 | E |
次元 | M L2 T−2 |
種類 | スカラー |
SI単位 | ジュール (J) |
CGS単位 | エルグ (erg) |
FPS単位 | フィート・パウンダル (ft·pdl) |
MKS重力単位 | 重量キログラムメートル (kgf·m) |
FPS重力単位 | フィート重量ポンド (ft·lbf) |
プランク単位 | プランクエネルギー (EP) |
原子単位 | ハートリー (Eh) |
国際単位系におけるエネルギーおよび熱量の単位はジュール (J) である。これは1948年に開かれた第9回国際度量衡総会にて決定された[21]。しかし、分野によっては他の単位が用いられることもある。例えば、栄養学や食品の世界ではカロリー (cal) が用いられる。カロリーには様々な定義があるが、日本の計量法では熱化学カロリー (thermochemical calorie) が用いられている。熱化学カロリーはジュールを用いて定義されており、正確に 1 calth = 4.184 J である[22]。 エネルギーの単位は他に以下のような単位がある。
toe (石油換算トン) |
tce (石炭換算トン) |
MBtu | Gcal | MWh | GJ | |
---|---|---|---|---|---|---|
toe | 1 | 0.7 | 0.0252 | 0.0999 | 0.0860 | 0.0239 |
tce | 1.428 6 | 1 | 0.0360 | 0.1428 | 0.1228 | 0.0341 |
MBtu | 39.683 | 27.778 | 1 | 0.2778 | 0.0239 | 0.9478 |
Gcal | 10.007 | 7.0049 | 0.2522 | 1 | 0.8604 | 0.2390 |
MWh | 11.630 | 8.1410 | 0.2931 | 1.1622 | 1 | 0.2778 |
GJ | 41.868 | 29.307 6 | 1.055 055 852 62 | 4.184 | 3.6 | 1 |
「エネルギー」はエネルギー資源を指していることもある。 産業・運輸・消費生活などに必要な動力の源のことをエネルギー資源と呼んでいる[1]。
18世紀までは主要なエネルギー源は薪、炭、鯨油などであったが、19世紀の産業革命のころからそれらにかわって石炭、水力、石油が主に用いられるようになり、20世紀には核燃料が登場した[24]。
最近では、一次資源が枯渇性エネルギーと再生可能エネルギーに分けて考えられるようになっており、再生可能エネルギーの開発とそれへの移行が進行中である。
エネルギー消費の構成が急激に大きく変化すること、特に第二次世界大戦後の石炭から石油への急激なエネルギー源の転換などを指して[25]、エネルギー革命と言う[25]。
|
古典力学 | |||||
---|---|---|---|---|---|
歴史 | |||||
|
|||||